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CURRENT AWARENESS SERVICE

The ketogenic diet and drug-resistant epilepsies

At the International League Against Epilepsy’s annual 
congress in Dublin in September, postdoctoral researcher 
Natasha Schoeler presented results from University College 
London’s trial into the ketogenic diet (keto) in children. 

Based at Great Ormond Street Hospital, London, the 
Ketogenic Diet in Infants with Epilepsy (KIWE) trial 
studied children under two years old with drug-resistant 
epilepsy. Before starting the trial, the team had assessed 
previous research in this area. It found there had been 13 
randomised control trials (RCT) into keto and that it was 
effective in older children. However, none of the trials 
concentrated on infants. They conducted a systematic 
review that found 31 uncontrolled studies and two 
randomized control trials with evidence of only a very 
few infants with epilepsy on a keto diet. A meta-analysis 
showed 60% of individuals had at least a 50% reduction 
in seizures at three to four months. 

The objective of KIWE was to “determine the 
effectiveness of the keto diet on seizure frequency 
compared to further ASMs in children under two-years old 
with apparent drug-resistant epilepsy”. Infants were 
randomized to receive the keto diet or a further ASM. 
KIWE was a phase-4 randomised control trial, working 
with patients at 18 sites across the UK. It followed infants 
in eight-week assessments and ended after 12 months. The 
demographics of the two groups were similar. 
Researchers found there was no evidence of keto being 
superior to a further ASM when it came to seizure 
frequency, with the two treatments having similar 
response rates. Of the group taking a further ASM, 40% 
achieved seizure reduction of more than 50%, with 13% 
becoming seizure free, and of the keto group, 44% 
achieved seizure reduction of more than 50%, with 11% 
becoming seizure free. Similarly, there was no difference 
in quality of life or impact on parent time. Schoeler said 
that the researchers were surprised that parents had 
recorded no difference on the impact of time 
“considering the perceived difficulty of implementing the 
ketogenic diet”. 

When it came to side effects, 43% of the group on ASMs 
reported at least one serious adverse event compared 
with 51% in the keto group. The types of event were 
similar, with seizures, infections and respiratory issues the 
most common. Schoeler said it was a challenging trial 
with a predictably slow recruitment, and parents tended 
to want the ketogenic diet immediately. In conclusion, she 
said the trial had found the “keto diet was no superior in 
efficacy to further ASM treatments of drug-resistant 
epilepsy in infancy”. However, it did appear to be safe and 
should be considered an option in infants after two ASMs. 

Schoeler said she expected full results of the trial to be 
published in the coming months. For more information 
go to: www.ucl.ac.uk/child-health/current-trials 
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Forthcoming courses and conferences

The following are details of forthcoming conferences and 
courses in epilepsy and general paediatric neurology.

October 2023 
2-4 
ILAE British Branch Annual Scientific Meeting 
Gateshead, UK 
ilaebritishconference.org.uk

November 2023 
11 
ILAE British Branch Clinical Epilepsy Course  
for Doctors in Training 
Birmingham, UK 
bit.ly/45kfy7E

March 2024 
3-8 
4th International Training Course on Neuropsychology  
in Epilepsy 
Lyon, France 
bit.ly/3VvHu2Z

May 2024 
5-8 
Seventeenth Eilat Conference on New Antiepileptic  
Drugs and Devices (EILAT XVII) 
Madrid, Spain 
bit.ly/3fdKAbT

June-July 
29-2 
10th Congress of the European  
Academy of Neurology 
Helsinki, Finland 
https://bit.ly/47LSi3L

September 2024 
7-11 
15th European Epilepsy Congress 
Rome, Italy 
ilae.org/congresses/15th-european-epilepsy-congress

Madrid

Gateshead 
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Your child and epilepsy
Grow your confidence managing 
epilepsy in your family

epilepsy.org.uk/yourchild

Your child and epilepsy is a new 
online course for parents and carers of 
children with epilepsy. It’s been developed 
with parents, epilepsy nurses and 
psychologists.

This course is a helping hand to support families 
on their epilepsy journey. It’s full of advice and 
stories from parents. It aims to give parents and 
carers the confidence, skills and knowledge to 
support their child to manage their epilepsy. 

There are eight parts that cover: 

• Understanding epilepsy

• Supporting your child with their epilepsy

• Keeping your child safe

• The impact of epilepsy on family life

• Your child’s wellbeing

• Learning and behaviour

• Growing up and independence

• Sources of help and support

The course is free and flexible.  
It can be accessed at any time on 
a computer, tablet or smartphone 
with internet access. 

Leaflets about the course to give to families can be requested by 
emailing nurseorders@epilepsy.org.uk

To view the course go to: epilepsy.org.uk/yourchild
Get in touch learning@epilepsy.org.uk

Registered charity in England and Wales (No. 234343)   © Copyright Epilepsy Action 2020

Free 
course

Epilepsy Action
Information you can trust

epilepsy.org.uk/trust
Find out more
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Epilepsy networks: basic understanding  
and clinical application

Dr Anand S. Iyer Consultant Paediatric Neurologist Apollo Hospitals International Limited, 
Ahmedabad, India and Alder Hey Children’s Hospital, Liverpool, UK 

Introduction
The human brain is essentially an electrical network and 
disturbance of electrical signals within this network leads to 
epileptic seizures. Understanding how these networks 
function is pivotal in learning about seizure onset, 
propagation and termination; and also improving our 
understanding about behavioural problems and other 
comorbidities in epilepsy. Treatment can also be modified 
depending on the extent of network involvement. Some 
fundamental questions within epilepsy revolve around: how 
does a seizure start and spread? Why do generalised spike 
and wave discharges, and seizures occur when they do? 
How do we know which area of the brain is involved in 
which epilepsy? Why do children have cognitive difficulties 
with epilepsy? Why do seizures persist in some patients 
following surgical resection? 

These networks and their connectivity can be understood 
on the basis of three main concepts: 

1. �Structural (anatomical) connectivity, which looks  
at the physical structure of the brain and how it is  
inter-connected – usually studied by MRI and various 
advances, including diffusion tensor imaging and cortical 
thickness measurements.  

2. �Functional connectivity, which is seen by the different 
EEG patterns in different areas of the brain during 
wakefulness and sleep, and correlating these with 
functional imaging techniques. 

3. �Effective connectivity, which relates to the influence of 
activity between areas of the brain, which is again recorded 
with intracranial EEG recordings such as stereo-EEG. 

This review will simplistically look at the different networks 
in the brain and how they influence seizures in different 
types of epilepsy.

Initiation, propagation and termination of seizures
The basic mechanism relating to seizure propagation has 
been studied predominantly by scalp and intracranial EEG 
recordings. The seizures in the generalised (genetic) 
epilepsies usually present with large amplitude spike and 
wave discharges, which are similar from start to finish. 
However, the seizures in focal epilepsies show an evolving 
pattern that initiates with low-voltage fast activity or 
hypersynchronous epileptiform discharges. This is followed 
by irregular large amplitude bursts of epileptiform 

discharges, followed by electrical depression [De Curtis et 
al, 2015]. There is a complex interplay of principal neurons 
that synchronously fire at the onset of a seizure, and the 
inhibitory interneurons that are active prior to the seizure 
and then suddenly deactivate at the onset of the seizure, 
then reactivate as the seizures end. Along with this, there 
are various neurotransmitters, predominantly GABA and 
glutamate, and voltage fluctuations across the sodium and 
potassium channels, all of which play a role in seizure 
progression. Inter-ictal epileptiform discharges may not 
necessarily correlate with seizure occurrence, although 
there can be an increase or decrease just before the seizure. 

From a network perspective, the brain has a set of network 
connections across different areas, which is referred to as 
the default mode network (DMN). [Tangwiriyasakul et al, 
2018]. In children with epilepsy, there are groups of neurons 
that may be firing in synchrony, which are referred to as 
‘hubs’. These hubs are related to neighbouring areas of the 
brain through various networks creating ‘microhubs’, which 
help in propagation of the seizure (Figure 1). During a 
seizure, the deactivation of the DMN, coupled with 
increased synchrony in the hubs and microhubs, leads to the 
seizure. This has been proven in rodent models and in-vivo 
epilepsy models, and can differ in generalised and focal 
epilepsies [Pinto et al, 2005]. In addition, in children who 
have epilepsy there is dysfunction in the resting state DMN 
– mainly increased network-synchronisation, which can 
contribute to cognitive and behavioural difficulties (Figure 2). 
Increased connectivity between the hubs and unrelated far 
away microhubs may be one of the reasons why selective 
epilepsy surgery is not successful [Shih 2019]. 

Figure 1: ‘Hubs’ and ‘microhubs’ – denoted by red forming an 
epileptic network within the default network of the brain
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Figure 2: Normal brain (A) and epileptic brain (B),  
increased network synchronisation in epileptic brain  
can lead to cognitive and behavioural difficulties

Networks in generalised epilepsy
It is now accepted that generalised seizures typically start in 
one or several parts of the brain but rapidly spread to 
involve several networks within the brain. The genetic 
generalised epilepsies (GGE, previously termed idiopathic 
generalised epilepsies) are a group of epilepsies where the 
presenting seizure type is a generalised seizure (tonic, tonic-
clonic, absence, myoclonic) and the EEG shows generalised 
spike and wave discharges. They are presumed to be due to 
a genetic cause and, although several genes have been 
identified in some cases, no single gene would contribute to 
the bulk of the generalised epilepsies. In practical terms, the 
GGEs comprise four syndromes in childhood – childhood 
absence epilepsy (CAE), juvenile absence epilepsy (JAE), 
juvenile myoclonic epilepsy (JME) and epilepsy with 
generalised tonic-clonic seizures alone (GTCA). The clinical 
and even the EEG distinction between these syndromes may 
not always be straightforward with some overlap.  Although 
the majority of children with this group of epilepsies have 
normal development and cognition, some children do show 
comorbidities with learning difficulties, hyperactivity and 
features of autistic spectrum disorder. It is not clearly known 
why some children are more prone to develop comorbid 
disorders than others, but increased synchronisation within 
the networks may well play a role, as discussed earlier.

The generalised spike and wave discharges seen on the EEG 
are conventionally assumed to have an abrupt onset and 
offset. However, studies with simultaneous EEG and 
functional MRI show that networks in such a brain may not 
always discharge abruptly. The generalised epileptiform 
discharges are driven by a focal cortical region, which 
engages rapidly with other areas of the brain through 
thalamocortical circuits. This is seen through the blood 
oxygenation level dependent (BOLD) functional MRI signal, 
which increases in the thalamus and reduces in some 
cortical regions that are thought to represent the default 
mode network (DMN) [Tangwiriyasakul et al, 2018; Lee et al, 
2020]. The DMN usually lies within the posterior cortical 
regions and is synchronised at rest. During the generalised 
discharges, the most active epileptiform network lies around 
the sensorimotor cortex, with connections with the 

prefrontal and precuneus regions. The posterior cortical 
network seems to be not as synchronous in children with 
such epilepsies. In the few seconds prior to discharge, the 
low synchrony in the posterior cortical network, followed 
by the ramping up of the synchrony in the networks 
between the sensorimotor cortex and frontal areas lead to 
a pro-ictal state. The prefrontal and precuneus regions 
become hub nodes and synchronisation between these 
subsequently leads to generalised spike wave discharges. 
There is also involvement of these discharges through the 
thalamocortical circuity in making them generalised. 

Another similar study that looked at the network 
organisation in childhood absence epilepsy, found that the 
critical epileptic hubs in the network are located in the 
posterior cingulate cortex, precuneus, angular gyrus, 
supramarginal gyrus, superior parietal and occipital regions 
[Kumar et al, 2023]. During the interictal discharges, there is 
weaker connection within these networks – hence the 
awareness may not always be impaired. However, during ictal 
discharges, there is stronger connectivity between these 
networks and the thalamus, leading to impaired awareness.

These networks probably explain why some children 
experience more than one types of seizure within the same 
epilepsy syndrome (e.g. juvenile myoclonic epilepsy and 
juvenile absence epilepsy). Stronger thalamocortical circuitry 
and increased synchronisation within the networks lead to 
seizures that may lead to impairment of awareness, such as 
absence seizures or even generalised tonic-clonic seizures. 

Networks in focal epilepsy
Focal epilepsies originate in a select area in the brain and 
propagate to involve other nearby areas, then spreading to 
involve wider networks. These have been extensively studied 
by video-telemetry in presurgical evaluation for epilepsy 
surgery. Intra-cranial depth electrode recordings have 
further provided insight into the onset, propagation and 
termination of the focal seizure, and the networks involved. 
Luders et al. defined the concept of epileptogenic zone as 
the area that initiates seizures and whose removal is 
necessary for complete seizure resolution [De Curtis et al, 
2015; Liou et al 2020]. Other zones related to seizure 
initiation and propagation were defined as follows (Figure 3):

1. �Irritative zone: area of cortex that generates inter-ictal 
epileptiform activity. 

2. �Seizure-onset zone: area where seizures initiate. 

3. �Symptomatogenic zone: area of cortex that produces 
the initial ictal signs or symptoms.

4. �Epileptogenic lesion: lesion seen macroscopically or on 
MRI that is responsible for seizures.

5. �Functional deficit zone: area of the cortex that is not 
functioning normally in the inter-ictal period.

Dr Anand S. Iyer Consultant Paediatric Neurologist  
Apollo Hospitals International Limited, Ahmedabad, India 
and Alder Hey Children’s Hospital, Liverpool, UK
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Figure 3: Description of zones related to the epileptogenic area

However, it is important to realise that this is a conceptual 
exercise based on data-collation from a variety of 
investigations including neuroimaging, video-telemetry and 
neuropsychological testing, all of which are clearly integral 
to pre-operative evaluation of a child undergoing 
assessment for epilepsy surgery. 

Recent studies have shown well-defined networks in 
different types of focal epilepsy, which have improved our 
understanding of their semiology and also the impact of 
network dysfunction on other aspects of cognition. Most of 
these studies used stereo-EEG or other intracranial 
recordings [Peng et al, 2019; Gupta et al, 202]. 

Temporal lobe epilepsy
This is the most well-studied epilepsy in adults and children, 
and mesial temporal lobe sclerosis (MTLS) remains the 
most common cause of epilepsy that is amenable to surgical 
resection. In children, dysgenetic tumours, focal cortical 
dysplasia and genetic disorders such as tuberous sclerosis 
complex are more common than MTLS [Peng et al, 2019; 
González et al, 2020]. However, in children the epilepsies 
usually involve a wider network leading to more varied 
presentations. The connections to the insula, orbito-frontal 
and occipital networks are responsible for much of this 
diversity in seizure semiology. 

Behavioural arrest is the most common feature of temporal 
lobe seizures and implies a spread to the thalamic networks 
leading to impairment of awareness. In children, motor 
features such as spasms, dystonic posturing and clonic 
jerking are all more likely to be seen than in adult temporal 
lobe epilepsy, and imply a more rapid spread to the frontal 
networks. Automatisms, oral and motor, are also common 
and are poorly lateralising. Auras, such as rising epigastric 
sensation and fear, and various hallucinations and illusions, 
can also be associated with origin in the mesial temporal 
area. Vegetative dysfunction, such as hyper-salivation, apnoea, 
nausea and vomiting, may represent spread to the insular 
networks. Somatosensory auras often reflect involvement of 

the frontal networks, whereas visual auras are likely to be 
due to involvement of occipital networks [Peng et al, 2019; 
González et al, 2020]. Sometimes, lesions elsewhere may 
lead to temporal lobe epilepsy, for example periventricular 
nodular heterotopias or hypothalamic hamartomas can lead 
to ictal spread within the temporal networks, leading to 
temporal lobe seizure semiology. Similarly, seizures arising 
from the orbitofrontal networks may quickly spread to the 
hippocampus and amygdala causing non-motor temporal 
lobe like semiology.

Frontal lobe epilepsies
Extra-temporal seizures are more common in children and 
the frontal lobes are the second most common origin after 
the temporal lobes that cause focal seizures. Most of them 
are short, explosive and motor, and occur in clusters. 
However, the frontal lobes are large and there is an 
extensive network within them that can contribute to a 
myriad of presentations. In addition, many of the epilepsies 
that originate elsewhere eventually lead to the frontal 
networks, which result in not only seizures but cognitive 
and behavioural disturbances [Barot et al, 2020]. The frontal 
lobe is divided into three different regions: motor, premotor 
and pre-frontal. The mesial aspect of the premotor area is 
called the supplementary motor area (Figure 3). The 
prefrontal region not only receives projections from other 
areas but also the dorsomedial nucleus of thalamus. 

Clinically, there are three distinct patterns of seizures arising 
from the frontal networks. Tonic seizures, with symmetrical 
or asymmetrical posturing, are likely to originate from the 
supplementary motor area. Some of these are triggered by 
sudden and unexpected stimuli, such as a startle. Versive 
seizures, with head and trunk deviation to one side, 
forcefully originate from the dorsolateral premotor cortex 
and occur contralaterally to the seizure focus. Ipsilateral 
head deviation can occur in seizures from the anterior 
mesial frontal cortex. Hypermotor seizures consist of either 
marked agitation with body rocking, kicking and boxing, or 
milder agitation with movements of trunk and pelvis with 
tonic posturing. Most of these originate in the mesial frontal 
or orbitofrontal networks.  Autonomic changes, which 
include tachycardia and bradycardia, may occur due to 
spread to networks involving the mesial temporal 
structures, amygdala and hippocampus. Ictal fear implies 
involvement of the cingulate networks. Ictal laughter, 
commonly seen in hypothalamic hamartomas, can be seen in 
the networks involving the pericingulate premotor area.

Posterior cortex epilepsies
Epilepsies that originate from the parietal, occipital and 
posterior temporal lobes are referred to as posterior 
cortex epilepsies. The seizures from these regions are less 
well localised and constitute approximately 10% of all 
refractory epilepsies [Jacobs, 2020]. The semiology of 
seizures can be challenging to interpret in view of the fast 
ictal propagation to the temporal or frontal networks. Most 
common aetiologies are structural, such as a focal cortical 



dysplasia, developmental tumours or gliosis, secondary to 
neonatal hypoglycaemia. 

The occipital lobe is the main visual processing area, and the 
primary visual cortex lies on the mesial occipital region. 
Other aspects constitute the visual association areas 
responsible for visuo-spatial processing, motion perception 
and colour discrimination. The parietal lobe is divided into 
superior and inferior parietal regions. The superior parietal 
forms the somatosensory association cortex and is 
responsible for visuo-motor coordination, integrating 
sensory information from various parts of the body and 
processes information related to touch and visuo-spatial 
processing. The inferior parietal region is closely linked with 
the angular gyrus and supramarginal gyrus. 

Visual hallucinations are the hallmarks of seizures originating 
from the occipital lobe. They can be positive (seeing objects) 
or negative (not seeing objects) and can be elementary 
(multicoloured, variable shapes and moving horizontally). 
Complex visual hallucinations may take the form of persons, 
animals, objects or figures, which may be familiar, friendly or 
frightening, and may be in the centre of the visual field and 
move horizontally. Ictal amaurosis is usually bilateral, but can 
also be homonymous hemianopsia. Visual illusions occur 
when the seizure is around the occipito-temporo-parietal 
area, which consists of distortion of images, changes of size 
(macropsia or micropsia) and shape (metamorphosia) and 
can be complex. Ictal or post-ictal headache is common in 
more than 50% of cases of occipital seizures and can be 
confused with a migraine [Rajapakse et al, 2016; D'Agnan et al, 
2023]. Ocular motor symptoms, such as forced eye blinking, 
eyelid flutter, nystagmus and deviation to one side, imply 
involvement of the frontal networks. Ictal vomiting and 
autonomic features imply origin in the occipital networks and 
can be seen in the self-limiting occipital childhood epilepsies. 

Somato-sensory auras imply involvement of parietal 
networks. These include numbness, pins and needles, and 
unpleasant crawling sensations, usually contralateral to the 
side of seizure onset. Pain, often described as burning, 
implies spread to the parietal operculum or insula. An alien 
hand syndrome (where one hand is not under voluntary 
control) may also occur. Spread to the temporal networks 
leads to vestibular sensations and vertigo. Language 
dysfunction can be seen when the temporal networks of 
the dominant hemisphere are involved. Focal tonic seizures 
strongly imply spread to the supplementary motor area 
networks and automatisms imply involvement of the 
temporal-limbic networks. 

Apart from visual impairment, which is likely in cases of 
gliosis secondary to neonatal hypoglycaemia, there is often 
developmental impairment and learning difficulties in 
children with occipital lobe epilepsies, which implies 
dysfunction of a wider functional network. The EEG may 
show a widespread inter-ictal discharge involving the parietal 
and posterior temporal regions, and can be poorly localising 

and even lateralising in many cases, in view of the rapid 
seizure spread to involve the neighbouring networks. 

In summary, basic knowledge of various networks involved 
from epilepsies arising from different areas is essential to 
interpret the semiology of focal seizures and consequently 
target investigations more appropriately – particularly when 
evaluating a child with drug-resistant epilepsy. 

Figure 4: Different epileptogenic networks and hubs in 
different areas of the brain

Epileptic network(s) and cognition
Difficulties in learning as well as developmental disorders 
are well-recognised comorbidities in children with epilepsy. 
Despite adequate control of seizures, some children 
continue to experience learning difficulties and studies have 
attempted to better understand the role of specific 
networks in this situation. The concept of a ‘default mode 
network’ involving functional connectivity between specific 
areas of the brain, such as the precuneus, medial prefrontal 
cortex and lateral parietal cortex, is important to 
understand [Bear et al, 2019]. This is a resting state network 
that becomes engaged in tasks such as social and adaptive 
behaviours, auditory attention, word list tasks and working 
memory. It typically attenuates during tasks that require 
higher cognitive functioning, such as language learning or 
reading. Multiple studies have showed less deactivation of 
the DMN during such learning tasks in children with 
epilepsy. In children with childhood epilepsy with centro-
temporal spikes, altered connectivity in the inferior frontal 
gyrus, temporal lobe, supramarginal and angular gyrus is 
associated with language dysfunction [Bear et al, 2019]. 
Similarly, network dysfunction in the dorsolateral prefrontal 
cortex, orbitofrontal cortex and anterior cingulate cortex 
has been associated with executive dysfunction, particularly 
with relation to attention, processing speed, working 
memory and inhibitory control, and is a prominent feature 
in frontal lobe epilepsies [Barot et al, 2020]. 

The role of networks in epilepsy surgery
It is important to understand the influence of networks 
when assessing and planning a specific resection for drug-
resistant epilepsy. The semiology of the seizures (as seen 
above in epilepsies originating from various parts of the 
brain) and the results of video-telemetry recordings, 

Page 7

Dr Anand S. Iyer Consultant Paediatric Neurologist  
Apollo Hospitals International Limited, Ahmedabad, India 
and Alder Hey Children’s Hospital, Liverpool, UK
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neuroimaging including functional imaging studies and 
detailed neuropsychology testing, must be collated in 
assessing each child for potential surgery.  The identification 
of the extent of network involvement and the removal of all 
relevant hubs is essential for success of a particular surgery. 

Children with MTLS may also have network hubs that 
involve the lateral neocortical temporal lobe [Amorim-Leite 
et al, 2020; Foit et al, 2020; McGonigall 2020]. Evaluating 
these in detail and using intracranial recordings through 
stereo-EEG is important when deciding whether selective 
removal of mesial structures or a more radical removal of 
the lateral temporal lobe will achieve the best outcome. This 
applies to both seizure freedom and cognitive outcome. The 
lack of detailed network analysis may well be one of the 
most important factors when explaining why some children 
experience breakthrough seizures after initial surgery.

Understanding the networks in treatment of epilepsy
The aim of epilepsy treatment is complete seizure control, 
which can be achieved in about 60-65% of children with 
anti-seizure medications (ASMs) alone [Kwan et al, 2010]. 
The medications have different mechanisms of action that 
involve the various channels (sodium, potassium, calcium 
etc) and neurotransmitters in the brain. The influence of 
ASMs on the networks is not understood. In the remaining 
35-40%, drug-resistant epilepsy ensues, and other 
approaches to treatment need to be considered including 
surgery. Simplistically, the treatment can be divided into 
‘vertex-centric’, which means removal of the vertex or hub 
of the epilepsy; or ‘network-centric’ which focuses on the 
treatment of the aberrant network; or a combination of the 
two [Kwan et al, 2010]. In children who are being evaluated 
for surgery, lesionectomy (vertex-centric) offers the best 
option for seizure control and discontinuing ASMs. Minimally 
invasive surgical treatments, such as gamma knife, 
radiofrequency thermocoagulation and laser interstitial 
thermotherapy (LITT), are other options where lesions are 
localised but difficult to safely access surgically, for example 
in the case of hypothalamic hamartoma. In some cases, 
where the seizures involve larger regions, disconnection of 
the network by means of corpus callosotomy or 
hemispherotomy; or large network disconnections such as 
temporo-parieto-occipital resection might be beneficial.

Figure 5: Understanding the network in the lesional epilepsy is 
essential to do the amount of resection for optimal outcome

Neuromodulation is gaining prominence in the treatment  
of drug-resistant epilepsy and particularly where surgery  
is impossible or has previously failed. Neuromodulation can 
be invasive, such as vagus nerve stimulation (VNS), deep 
brain stimulation (DBS), or responsive neurostimulation 
(RNS), or non-invasive, such as transcutaneous auricular 
vagus nerve stimulation or transcranial direct current 
stimulation [Lehnertz et al, 2023]. The latter yields to 
modulate cortical excitability by subthreshold membrane 
depolarization or hyperpolarization. Similarly, RNS delivers 
neuromodulation locally. It is a closed-loop system with 
subdural or depth electrodes (placed within or very close 
to the seizure-onset network) that records 
neurophysiological ictal signs and stimulates locally to 
terminate the ictal discharges. This is promising for cases 
where the epilepsy may be arising from eloquent areas of 
the brain that may not be amenable to a safe and 
complication-free resection. 

Another closed-loop neuromodulation device does not use 
cerebral input, but a cardiac-based seizure detection 
algorithm (CBSD-VNS). A pre-defined increase of the heart 
rate is supposed to be seizure-related and triggers 
additional vagus nerve stimulation, thereby the closed-loop 
system is a brain-heart loop. The exact mechanisms of 
action of CBSD-VNS and of the classic off-loop VNS are  
not fully understood but due to the widespread projections 
of the vagal nerve, by now a rather unspecific global  
(i.e, network-centric) brain activation is presumed.  
The transcutaneous auricular vagus nerve stimulation  
device (taVNS), stimulating the auricular branch of the  
vagus nerve, seems to target similar projection areas as  
the VNS device, so an unspecific and rather global 
modulation is to be supposed. For DBS in epilepsy, the  
exact mechanism of action is not fully understood. In  
drug-resistant epilepsies arising from both temporal lobes, 
electrodes are implanted bilaterally into the anterior nuclei 
of the thalamus. The anterior nuclei of the thalamus have 
widespread interaction, so an unspecific and rather global 
modulation has to be assumed. To sum this up, VNS,  
taVNS and DBS conceptually act as ‘network-centric’ 
seizure control.

Summary
In summary, it is exciting but also challenging to review 
concepts in epilepsy as a network disease. Although there is 
often a discrete localised region to resect, ablate or 
neuromodulate, in many patients with drug-resistant focal 
epilepsy, functional and structural connectivity studies have 
convincingly shown that multiple regions of the brain are 
involved in the genesis and/or propagation of seizures or in 
the maintenance of epileptogenicity. Although one may be 
able to eliminate seizures by removing a small part of the 
brain, other networks that may be involved can rekindle 
epileptogenicity or contribute to comorbid problems, or 
both. It is possible that multiple interventions, including 
ASMs, resection and neuromodulation may all be needed in 
a few patients to significantly improve seizure outcome and, 
consequently, quality of life.



Page 9

One promising clinical application is the use of network 
studies in seizure detection, which is an area of increasing 
research.  A sensitive and consistently reliable method to 
predict seizures will significantly impact clinical practice and 
mitigate disability for our patients, who usually have no idea 
when the next seizure will occur. If patients can know with 
a high degree of accuracy that a seizure will start within 
minutes of its occurrence, personal safety measures and 
notification algorithms can be developed and then 
implemented. Theoretically, this could lead to greater 
independence, reduced anxiety, fewer injuries and potentially 
a lower risk for sudden death in epilepsy. This is a really 
exciting area for future research.

Finally, the increasing knowledge and clinical significance of 
networks further emphasises the need to always obtain a 
detailed account, supported by mobile phone footage,  
of seizures when diagnosing epilepsy and the specific 
epilepsy syndrome. 
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